## FPF1003-FPF1004

IntelliMAX ${ }^{\text {TM }}$ Advanced Load Management Products

## Features

■ 1.2 to 5.5 V Input Voltage Range

- $R_{\mathrm{DS}(\mathrm{ON})}=30 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
- $R_{\mathrm{DS}(\mathrm{ON})}=35 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$

■ ESD Protected, above 2000V HBM

## Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports
- Hot Swap Supplies
- RoHS Compliant


## General Description

The FPF1003 \& FPF1004 are low RDS P-Channel MOSFET load switches with controlled turn-on. The input voltage range operates from 1.2 V to 5.5 V to fulfill today's Ultra Portable Device's supply requirement. Switch control is by a logic input (ON) capable of interfacing directly with low voltage control signal. In FPF1004, $120 \Omega$ on-chip load resistor is added for output quick discharge when switch is turned off.
Both FPF1003 \& FPF1004 are available in a space-saving $1.0 \times 1.5 \mathrm{~mm}^{2}$ chip scale package, $1.0 \times 1.5 \mathrm{CSP}-6$.


BOTTOM


TOP

## Typical Application Circuit



## Ordering Information

| Part | Switch | Input buffer | Output Discharge | ON Pin Activity | Top Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FPF1003 | $30 \mathrm{~m} \Omega$, PMOS | Schmitt | NA | Active HI | 3 |
| FPF1004 | $30 \mathrm{~m} \Omega$, PMOS | Schmitt | $120 \Omega$ | Active HI | 4 |

## Functional Block Diagram



## Pin Configuration


$1.0 \times 1.5$ CSP Bottom View

## Pin Description

| Pin | Name | Function |
| :---: | :---: | :--- |
| A2, B2 | $\mathrm{V}_{\text {IN }}$ | Supply Input: Input to the power switch and the supply voltage for the IC |
| C2 | ON | ON Control Input |
| A1, B1 | $\mathrm{V}_{\text {OUT }}$ | Switch Output: Output of the power switch |
| C1 | GND | Ground |

Absolute Maximum Ratings

| Parameter | Min | Max | Unit |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, ON to GND | -0.3 | 6 | V |
| Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) |  | 1.2 | W |
| Maximum Continuous Switch Current |  | 2.0 | A |
| Operating Temperature Range | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance, Junction to Ambient |  |  | 85 |
| Electrostatic Discharge Protection | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |

## Recommended Operating Range

| Parameter | Min | Max | Unit |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}}$ | 1.2 | 5.5 | V |
| Ambient Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics

$\mathrm{V}_{\text {IN }}=1.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic Operation |  |  |  |  |  |  |
| Operating Voltage | $\mathrm{V}_{\text {IN }}$ |  | 1.2 |  | 5.5 | V |
| Quiescent Current | $\mathrm{I}_{\mathrm{Q}}$ | $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{Von}$ |  |  | 1 | $\mu \mathrm{A}$ |
| Off Supply Current | $\mathrm{I}_{\mathrm{Q} \text { (off) }}$ | $\mathrm{V}_{\text {ON }}=\mathrm{GND}$, OUT $=$ open |  |  | 1 | $\mu \mathrm{A}$ |
| Off Switch Current | $\mathrm{I}_{\text {SD(off) }}$ | $\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=0 @ \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=0 @ \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 10 | 100 | nA |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 20 | 30 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{V}_{1 \mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 25 | 35 |  |
|  |  | $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 50 | 75 |  |
|  |  | $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 95 | 150 |  |
| Output Pull Down Resistance | $\mathrm{R}_{\mathrm{PD}}$ | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1004$ |  | 75 | 120 | $\Omega$ |
| ON Input Logic High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V | 2 |  |  | V |
|  |  | $\mathrm{V}_{1 \mathrm{~N}}=1.2 \mathrm{~V}$ | 0.8 |  |  |  |
| ON Input Logic Low Voltage | VIL | $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V |  |  | 0.8 | V |
|  |  | $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ |  |  | 0.35 |  |
| ON Input Leakage |  | $\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND |  |  | 1 | $\mu \mathrm{A}$ |
| Dynamic |  |  |  |  |  |  |
| Turn on delay | $\mathrm{t}_{\mathrm{ON}}$ | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 13 |  | $\mu \mathrm{s}$ |
| Turn off delay | $\mathrm{t}_{\text {OFF }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1003 \end{aligned}$ |  | 45 |  | $\mu \mathrm{s}$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \\ & \mathrm{R}_{\mathrm{L}_{\text {CHIP }}}=120 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { FPF1004 } \\ & \hline \end{aligned}$ |  | 15 |  | $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {OUT }}$ Rise Time | $\mathrm{t}_{\mathrm{R}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 13 |  | $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {OUt }}$ Fall Time | $\mathrm{t}_{\mathrm{F}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1003 \end{aligned}$ |  | 113 |  | $\mu \mathrm{s}$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \\ & \mathrm{R}_{\mathrm{L}_{\text {CHIP }}}=120 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { FPF1004 } \\ & \hline \end{aligned}$ |  | 10 |  | $\mu \mathrm{s}$ |

Note 1: Package power dissipation on 1square inch pad, 2 oz. copper board.

## Typical Characteristics



Figure 1. Quiescent Current vs. $\mathrm{V}_{\mathrm{IN}}$


Figure 3. Quiescent Current vs. Temperature


Figure 5. Iswitch-off Current vs. Temperature


Figure 2. ON Threshold vs. $\mathrm{V}_{\mathrm{IN}}$


Figure 4. Quiescent Current (off) vs. Temperature


Figure 6. Iswitch-OfF Current vs. $\mathrm{V}_{\mathrm{IN}}$

## Typical Characteristics



Figure 7. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{IN}}$


Figure $9 . \mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\text {Off }} \mathrm{vs}$. Temperature


Figure 11. FPF1003 TON Response


Figure 8. $\mathrm{R}_{\mathrm{ON}}$ vs. Temperature


Figure 10. $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$ vs. Temperature


Figure 12. FPF1003 Toff Response

Typical Characteristics


Figure 13. FPF1003 TON Response


Figure 15. FPF1004 TON Response


Figure 17. FPF1004 TON Response


Figure 14. FPF1003 Toff Response


Figure 16. FPF1004 Toff Response


Figure 18. FPF1004 Toff Response

## Description of Operation

The FPF1003 \& FPF1004 are low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ P-Channel load switches with controlled turn-on. The core of each device is a $30 \mathrm{~m} \Omega$ P-Channel MOSFET and a controller capable of functioning over a wide input operating range of $1.2-5.5 \mathrm{~V}$. Switch control is by a logic input (ON) capable of interfacing directly with low voltage control signal. In FPF1004, 120』 on-chip load resistor is added for output quick discharge when switch is turned off.

## Application Information

Typical Application


## Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between $\mathrm{V}_{\mathrm{IN}}$ and GND. A $1 \mu \mathrm{~F}$ ceramic capacitor, $\mathrm{C}_{\mathrm{IN}}$, placed close to the pins is usually sufficient. Higher values of $C_{I N}$ can be used to further reduce the voltage drop.

## Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor, $\mathrm{C}_{\text {OUT }}$, should be placed between $\mathrm{V}_{\text {OUT }}$ and GND. This capacitor will prevent parasitic board inductance from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch turns-off. Due to the integral body diode in the PMOS switch, a $\mathrm{C}_{\mathrm{IN}}$ greater than $\mathrm{C}_{\text {OUT }}$ is highly recommended. A $\mathrm{C}_{\text {OUT }}$ greater than $\mathrm{C}_{\mathrm{IN}}$ can cause $\mathrm{V}_{\text {OUT }}$ to exceed $\mathrm{V}_{\text {IN }}$ when the system supply is removed. This could result in current flow through the body diode from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.

Dimensional Outline and Pad Layout


TOP VIEW


SIDE VIEW

NOTES:
A) ALLDIMENSIONS ARE IN MILLIMETERS.


RECOMMENDED LAND PATTERN


BOTTOM VIEW

## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx ${ }^{\text {® }}$ | GTO ${ }^{\text {™ }}$ | Power247 ${ }^{\text {® }}$ | SyncFET ${ }^{\text {TM }}$ |
| :---: | :---: | :---: | :---: |
| Across the board. Around the world. ${ }^{\text {TM }}$ | HiSeC ${ }^{\text {™ }}$ | PowerEdge ${ }^{\text {TM }}$ | TCM ${ }^{\text {™ }}$ |
| ActiveArray ${ }^{\text {™ }}$ | $i-L o^{\text {TM }}$ | PowerSaver ${ }^{\text {TM }}$ | The Power Franchise ${ }^{\text {® }}$ |
| Bottomless ${ }^{\text {TM }}$ | ImpliedDisconnect ${ }^{\text {TM }}$ | Power-SPM ${ }^{\text {™ }}$ | (1) TM |
| Build it $\mathrm{Now}^{\text {TM }}$ | IntelliMAX ${ }^{\text {TM }}$ | PowerTrench ${ }^{\text {® }}$ |  |
| CoolFET ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {TM }}$ | Programmable Active Droop ${ }^{\text {TM }}$ | TinyBuck ${ }^{\text {TM }}$ |
| CROSSVOLT ${ }^{\text {TM }}$ | MICROCOUPLER ${ }^{\text {TM }}$ | QFET ${ }^{\text {® }}$ | TinyLogic ${ }^{\text {® }}$ |
| CTL ${ }^{\text {TM }}$ | MicroPak ${ }^{\text {TM }}$ | QS ${ }^{\text {™ }}$ | TINYOPTOTM |
| Current Transfer Logic ${ }^{\text {TM }}$ | MICROWIRE ${ }^{\text {TM }}$ | QT Optoelectronics ${ }^{\text {TM }}$ | TinyPower ${ }^{\text {TM }}$ |
| DOME ${ }^{\text {TM }}$ | Motion-SPM ${ }^{\text {TM }}$ | Quiet Series ${ }^{\text {TM }}$ | TinyWire ${ }^{\text {TM }}$ |
| $\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$ | MSX ${ }^{\text {™ }}$ | RapidConfigure ${ }^{\text {TM }}$ | TruTranslation ${ }^{\text {TM }}$ |
| EcoSPARK ${ }^{\text {® }}$ | MSXPro ${ }^{\text {Tm }}$ | RapidConnect ${ }^{\text {TM }}$ | $\mu \text { SerDes }^{\text {TM }}$ |
| EnSigna ${ }^{\text {TM }}$ | OCX' ${ }^{\text {™ }}$ | ScalarPump ${ }^{\text {TM }}$ | UHC ${ }^{\text {® }}$ |
| FACT Quiet Series ${ }^{\text {TM }}$ | OCXPro ${ }^{\text {™ }}$ | SMART START ${ }^{\text {TM }}$ | UniFET ${ }^{\text {tm }}$ |
| FACT ${ }^{\text {® }}$ | OPTOLOGIC ${ }^{\circledR}$ | SPM ${ }^{\text {® }}$ | VCXTM |
| FAST ${ }^{\text {® }}$ | OPTOPLANAR ${ }^{\circledR}$ | STEALTH ${ }^{\text {TM }}$ | Wire ${ }^{\text {TM }}$ |
| FASTr ${ }^{\text {TM }}$ | PACMAN ${ }^{\text {TM }}$ | SuperFET ${ }^{\text {TM }}$ |  |
| FPS ${ }^{\text {TM }}$ | PDP-SPM ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$-3 |  |
| FRFET ${ }^{\text {® }}$ | POP ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$-6 |  |
| GlobalOptoisolator ${ }^{\text {TM }}$ | Power220 ${ }^{\text {® }}$ | SuperSOT ${ }^{\text {TM }}$-8 |  |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## PRODUCT STATUS DEFINITIONS

Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative or In Design | This datasheet contains the design specifications for product development. <br> Specifications may change in any manner without notice. |
| Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be <br> published at a later date. Fairchild Semiconductor reserves the right to make <br> changes at any time without notice to improve design. |
| No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves <br> the right to make changes at any time without notice to improve design. |
| Obsolete | Not In Production | This datasheet contains specifications on a product that has been <br> discontinued by Fairchild semiconductor. The datasheet is printed for <br> reference information only. |

